首页> 外文OA文献 >Interacting Attention-gated Recurrent Networks for Recommendation
【2h】

Interacting Attention-gated Recurrent Networks for Recommendation

机译:用于建议的交互式注意门控循环网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Capturing the temporal dynamics of user preferences over items is importantfor recommendation. Existing methods mainly assume that all time steps inuser-item interaction history are equally relevant to recommendation, whichhowever does not apply in real-world scenarios where user-item interactions canoften happen accidentally. More importantly, they learn user and item dynamicsseparately, thus failing to capture their joint effects on user-iteminteractions. To better model user and item dynamics, we present theInteracting Attention-gated Recurrent Network (IARN) which adopts the attentionmodel to measure the relevance of each time step. In particular, we propose anovel attention scheme to learn the attention scores of user and item historyin an interacting way, thus to account for the dependencies between user anditem dynamics in shaping user-item interactions. By doing so, IARN canselectively memorize different time steps of a user's history when predictingher preferences over different items. Our model can therefore providemeaningful interpretations for recommendation results, which could be furtherenhanced by auxiliary features. Extensive validation on real-world datasetsshows that IARN consistently outperforms state-of-the-art methods.
机译:捕获用户对项目的偏好的时间动态对于推荐很重要。现有方法主要假定用户-项目交互历史中的所有时间步均与推荐相关,但是不适用于现实环境中用户-项目交互经常偶然发生的情况。更重要的是,他们分别学习用户和项目动态,因此无法捕获他们对用户与项目交互的共同影响。为了更好地建模用户和项目动态,我们提出了交互注意门控递归网络(IARN),它采用注意模型来衡量每个时间步长的相关性。特别是,我们提出了一种注意力吸引方案,以交互的方式学习用户和项目历史的注意力得分,从而在塑造用户-项目交互时考虑了用户和项目动力学之间的依赖性。通过这样做,当预测用户对不同项目的偏好时,IARN可以有选择地存储用户历史记录的不同时间步长。因此,我们的模型可以为推荐结果提供有意义的解释,而辅助功能可以进一步增强这些结果。对真实数据集的广泛验证表明,IARN始终优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号